
22	 May/June	2010	 Published	by	the	IEEE	Computer	Society	 0272-1716/10/$26.00	©	2010	IEEE

Ultrascale	Visualization

Extreme Scaling of Production
Visualization Software on Diverse
Architectures
Hank Childs ■ Lawrence Berkeley National Laboratory

David Pugmire and Sean Ahern ■ Oak Ridge National Laboratory

Brad Whitlock ■ Lawrence Livermore National Laboratory

Mark Howison, Prabhat, Gunther H. Weber, and E. Wes Bethel ■ Lawrence Berkeley National Laboratory

Over the last decade, supercomputer capa-
bilities have increased at a staggering rate.
Petascale computing has arrived, and ma-

chines capable of tens of petaflops will be available
in a few years. No end is in sight to this trend, with
research in exascale computing well under way.

These machines are used primar-
ily for scientific simulations that
produce extremely large data sets.
The value of these simulations is
the scientific insights they pro-
duce, which are often enabled
by scientific visualization. If vi-
sualization software can’t keep
pace with the massive data sets
simulations will produce in the
near future, however, it will po-
tentially jeopardize the value of
the simulations and thus the su-
percomputers themselves.

For large-data visualization,
the most fundamental question
is what paradigm to use to pro-

cess this data. Most visualization software for large
data, including much of the production visualiza-
tion software that serves large user communities,
uses brute-force pure parallelism—data parallelism
with no optimizations to reduce the amount of data
being read. In this approach, the simulation writes

data to disk and the visualization software reads
this data at full resolution, storing it in primary
memory. Because the data is so large, it’s necessary
to parallelize its processing by partitioning the data
over processors and having each processor work on
a piece of the problem. Through parallelization, the
visualization software can access more I/O band-
width (to read data faster), more memory (to store
more data), and more computing power (to execute
its algorithms more quickly).

Our research seeks to better understand how
pure parallelism will perform on more cores with
larger data sets. How does this technique scale?
What are the bottlenecks? What are the pitfalls of
running production software at a massive scale?
And will pure parallelism be effective for the next
generation of data sets?

These questions are especially important because
pure parallelism is not the only data-processing
paradigm. And where pure parallelism is heavily
dependent on I/O bandwidth and large memory
footprints, alternatives de-emphasize these traits.
Examples include in situ processing, where visual-
ization algorithms operate during the simulation’s
run, and multiresolution techniques, where a hier-
archical version of the data set is created and vi-
sualized from coarser to finer versions. With this
paper, however, we only study how pure parallel-
ism will handle massive data.

This	article	presents	the	results	
of	experiments	studying	how	
the	pure-parallelism	paradigm	
scales	to	massive	data	sets,	
including	16,000	or	more	cores	
on	trillion-cell	meshes,	the	
largest	data	sets	published	
to	date	in	the	visualization	
literature.	The	findings	on	
scaling	characteristics	and	
bottlenecks	contribute	to	
understanding	how	pure	
parallelism	will	perform	in	the	
future.

	 IEEE	Computer	Graphics	and	Applications	 23

We performed our experiments using only a sin-
gle visualization tool, VisIt, although we don’t believe
this limits the impact of our results. We aimed to un-
derstand whether pure parallelism will work at ex-
treme scale, not to compare tools. When a program
succeeds, it validates the underlying technique.
When a program fails, it might indicate a failing in
the technique or a poor program implementation.
Our principal findings here were that pure paral-
lelism at an extreme scale worked, that algorithms
such as contouring and rendering performed well,
and that I/O times were very long. Therefore, the
only issue requiring further study was I/O per-
formance. We could have addressed this issue by
studying other production visualization tools, but
they would ultimately employ the same (or simi-
lar) low-level I/O calls, such as fread, that are
themselves the key problem. So, rather than varying
visualization tools, each of which follows the same
I/O pattern, we varied the I/O patterns (that is,
we used collective and noncollective I/O) and com-
pared them across architectures and file systems.

Pure Parallelism
Pure parallelism partitions the underlying mesh (or
points for scattered data) of a large data set among
its cores, each of which corresponds to a message
passing interface (MPI) task. Each core loads its
portion of the data set at full resolution, applies
visualization algorithms to its piece, and then
combines the results, typically through rendering.
In VisIt, the pure-parallelism implementation cen-
ters around data-flow networks. To satisfy a given
request, every core sets up an identical data-flow
network, differentiated only by the portion of the
whole data set on which that core operates. (For
previous work on this area, see the “Related Work
in Large-Data Visualization” sidebar.)

Many visualization algorithms are embarassingly
parallel; that is, they require no interprocess com-
munication and can operate on their own portion
of the data set without coordination with the other
cores. Examples of these algorithms are slicing and
contouring. However, some important algorithms
do require interprocess communication and there-
fore aren’t embarassingly parallel. Examples include
volume rendering, streamline generation, and ghost
data generation. (When a large data set is decom-
posed into chunks, ghost data is a redundant layer
of cells around the boundaries of each chunk. These
extra cells are sometimes necessary to prevent arti-
facts, usually due to interpolation inconsistencies.)

The pure-parallelism paradigm accommodates
both types of algorithms. For embarrassingly par-
allel algorithms, each core can directly apply the

serial algorithms to its portion of the data set.
Pure parallelism is often the simplest environment
to implement non-embarrassingly parallel algo-
rithms as well, because every piece of data is avail-
able at any time, at full resolution. This property
is especially beneficial when the operation order is
data dependent (streamlines) or when coordina-
tion between the data chunks is necessary (volume
rendering, ghost data generation).

After the algorithms are applied, their results
are rendered in parallel. The rendering algorithm
combines all the cores’ results, as if all the data
was rendered on a single core. The algorithm scales
relatively well, although the combination phase is
O(n log n).

Pure parallelism typically employs one of two
hardware scenarios. Processing occurs

 ■ on a smaller supercomputer dedicated to visu-
alizing and analyzing data sets produced by a
larger supercomputer or

 ■ on the supercomputer that generated the data.

In both scenarios, visualization and analysis pro-
grams often operate with substantially less re-
sources than the simulation code for the same
data set. For either hardware scenario, the rule of
thumb for pure parallelism is to have approximately
10 percent of the total memory footprint used to
generate the data. Although rising hardware costs
have relaxed this rule somewhat for the largest su-
percomputers, many US supercomputing centers
are procuring dedicated machines that come close
to this guideline. For example, Lawrence Livermore
National Laboratory’s Gauss machine has 8 percent
of the memory of the Blue Gene/L machine, and
Argonne National Laboratory’s Eureka has nearly
5 percent of the memory of the Intrepid machine.
Our research for this article was done with the sec-
ond scenario, on the supercomputer itself, but our
results apply to either hardware scenario.

Massive-Data Experiments
Our basic experiment used a parallel program with
high concurrency to read in a very large data set,
apply a contouring algorithm (Marching Cubes),
and render this surface as a 1,024 × 1,024 im-
age. We originally wanted to also perform volume
rendering but encountered difficulties (which we
describe later). An unfortunate reality of experi-
ments of this nature is that running large jobs on
the largest supercomputers in the world is a diffi-
cult and opportunistic undertaking. After improv-
ing our volume-rendering algorithm, we couldn’t
rerun our experiments on all these machines with

24	 May/June	2010

Ultrascale	Visualization

the improved volume-rendering code. Furthermore,
real-world issues such as I/O and network conten-
tion undoubtedly affected the performance of
these runs. Although we only studied isosurfacing,
the process of loading data, applying an algorithm,
and rendering is representative of many visualiza-
tion operations, and involves a significant portion
of the code base.

Our variations of this experiment fell into three

categories. The first was diverse supercomputing en-
vironments. We tested these techniques’ viability
with different operating systems, I/O behavior, com-
puting power (flops), and network characteristics.

We performed these tests on

 ■ two Cray XT machines (Oak Ridge National
Laboratory’s JaguarPF and Lawrence Berkeley
National Laboratory’s Franklin),

A lternatives to pure parallelism include in situ processing,1,2
multiresolution processing,3,4 out-of-core processing,5

and data subsetting.6,7 Framing the decision of which para-
digm to use to process massive data as a competition
between pure parallelism and the others is an oversimplifi-
cation. These techniques have various strengths and weak-
nesses and are often complementary. From our perspective,
the issue is whether pure parallelism will scale sufficiently to
process massive data sets.

Our study employed the VisIt visualization tool,8 which
primarily uses pure parallelism, although some of its algo-
rithms allow for out-of-core processing, data subsetting,
or in situ processing. (The experiments in the main article
used pure parallelism exclusively.) ParaView,9 another vi-
able choice for our study, also relies heavily on pure paral-
lelism, again with options for out-of-core processing, data
subsetting, and in situ visualization. These tools’ end users,
however, use pure parallelism almost exclusively, using the
other paradigms only situationally. Both tools rely on the
Visualization ToolKit (VTK),10 which provides relatively small
memory overhead for large data sets. This was crucial for
our study (because data sets must fit in memory) and es-
pecially important given the trend in petascale computing
toward low-memory machines.

The parallel VTK/ParaView infrastructure, in the context
of this pure-parallelism article, is highly similar to the VisIt
implementation in that they both divide the data set into
pieces, partition those pieces, operate in an embarrassingly
parallel fashion when possible, and perform parallel ren-
dering. So, we believe our scalability results are applicable
to the major open-source large data visualization tools in
use today. Yet another viable choice to explore pure paral-
lelism would have been the commercial product EnSight,11
but accurately measuring performance with it would have
been more difficult.

We believe this effort is the first to examine the per-
formance of pure parallelism at extreme scale on diverse
architectures. However, other publications provide cor-
roboration in this space, albeit as individual data points.
For example, Tom Peterka and his colleagues demon-
strated a similar overall balance of I/O and computation
time when volume-rendering a 90-billion-cell data set on
a Blue Gene/P machine.12

References
 1. C.R. Johnson, S. Parker, and D. Weinstein, “Large-Scale Com-

putational Science Applications Using the SCIRun Problem

Solving Environment,” Proc. Int’l Supercomputing Conf. (ISC 00),

2000; http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.140.2320&rep=rep1&type=pdf.

 2. R. Haimes, “pV3: A Distributed System for Large-Scale Unsteady

CFD Visualization,” paper 94-0321, Am. Inst. Aeronautics and

Astronautics, 1994.

 3. J. Clyne et al., “Interactive Desktop Analysis of High Resolution

Simulations: Application to Turbulent Plume Dynamics and

Current Sheet Formation,” New J. Physics, Aug. 2007, p. 301.

 4. V. Pascucci and R.J. Frank, “Global Static Indexing for Real-Time

Exploration of Very Large Regular Grids,” Proc. 2001 ACM/IEEE

Conf. Supercomputing (SC 01), IEEE CS Press, 2001, p. 2.

 5. C. Silva et al., “Out-of-Core Algorithms for Scientific Visualiza-

tion and Computer Graphics,” Course Notes from Proc. IEEE

Visualization, 2002; http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.15.6463.

 6. H. Childs et al., “A Contract Based System for Large Data

Visualization,” Proc. 16th IEEE Conf. Visualization (VIS 05),

IEEE CS Press, 2005, p. 25.

 7. O. Rübel et al., “High Performance Multivariate Visual Data

Exploration for Extremely Large Data,” Proc. 2008 ACM/IEEE

Conf. Supercomputing (SC 08), IEEE CS Press, 2008, pp. 1–12.

 8. H. Childs and M. Miller, “Beyond Meat Grinders: An Analysis

Framework Addressing the Scale and Complexity of Large

Data Sets,” Proc. 2006 High-Performance Computing Symp.

(HPC 06), Soc. for Modeling and Simulation Int’l (SCS), 2006,

pp. 181–186.

 9. C.C. Law, A. Henderson, and J. Ahrens, “An Application Ar-

chitecture for Large Data Visualization: A Case Study,” Proc.

IEEE 2001 Symp. Parallel and Large-Data Visualization and

Graphics (PVG 01), IEEE Press, 2001, pp. 125–128.

 10. W.J. Schroeder, K.M. Martin, and W.E. Lorensen. “The Design

and Implementation of an Object-Oriented Toolkit for 3D

Graphics and Visualization,” Proc. 7th IEEE Conf. Visualization

(VIS 96), IEEE CS Press, 1996, pp. 93–ff.

 11. EnSight User Manual, ver. 9.0, Computational Eng. Int’l,

2008; www2.ensight.com/90_manuals/90-UserManual.pdf.

12. T. Peterka et al., “End-to-End Study of Parallel Volume Rendering

on the IBM Blue Gene/P,” Proc. 2009 Int’l Conf. Parallel Processing

(ICPP 09), IEEE CS Press, 2009, pp. 566–573.

Related Work in Large-Data Visualization

	 IEEE	Computer	Graphics	and	Applications	 25

 ■ a Sun Linux machine (the Texas Advanced Com-
puting Center’s Ranger),

 ■ a Chaos Linux machine (Lawrence Livermore
National Laboratory’s Juno),

 ■ an AIX (Advanced Interactive Executive) ma-
chine (Lawrence Livermore’s Purple), and

 ■ a Blue Gene/P machine (Lawrence Livermore’s
Dawn).

Table 1 provides details about these machines. For
all but Purple, we ran with 16,000 cores and visu-
alized one trillion cells. (On Purple, we ran with
only 8,000 cores and a half trillion cells because
the full machine has only 12,208 cores and only
8,000 are easily obtainable for large jobs.) For Jag-
uarPF and Franklin, which had more than 16,000
cores available, we performed a weak-scaling study,
maintaining a ratio of one trillion cells for every
16,000 cores (see Figure 1).

The second category was I/O pattern. We tested
whether certain patterns (collective versus noncol-
lective) exhibit better performance at scale. For the
noncollective tests, we generated the data as com-
pressed binary data (gzipped). We used 10 files for
every core; every file contained 6.25 million data
points, for a total of 62.5 million data points per
core. Because simulation codes often write out one
file per core and, as a rule of thumb, visualization
codes receive one-tenth of the cores of the simula-
tion code, we used multiple files per core to best
emulate common real-world conditions. Because
this pattern might not be optimal for I/O access,
we performed a separate test in which all cores used
collective access on a single, large file via MPI-IO.

The third category was data generation. Our pri-
mary mechanism was to upsample data by inter-
polating a scalar field for a smaller mesh onto a
high-resolution rectilinear mesh. However, to off-
set concerns that upsampled data might be unrep-
resentatively smooth, we ran a second experiment,
in which the large data set replicated a small data
set many times over. The source data set was a
core-collapse supernova simulation from the Chi-
mera code on a curvilinear mesh of more than
3.5 million cells. (The sample data was courtesy of

Tony Mezzacappa and Bronson Messer from Oak
Ridge, Steve Bruenn from Florida Atlantic Uni-
versity, and Reuben Budjiara from the University
of Tennessee.) We applied these upsampling and
replication approaches because we aren’t aware of
any data sets containing trillions of cells. More-
over, our study’s primary objective was to better
understand the performance and functional lim-
its of parallel visualization software, which can be
achieved using synthetic data.

Varying over the Supercomputing Environment
We ran these experiments on different supercom-
puters and kept the I/O pattern and data genera-
tion fixed, using noncollective I/O and upsampled
data generation. Figure 2 and Table 2 show the
results.

Figure	1.	Our	first	category	of	experiments	varied	over	supercomputing	
environment.	This	image	is	from	the	Franklin	run,	showing	a	contour	of	
a	32,000-core	VisIt	visualization	of	a	two-trillion-cell	data	set.

Table 1. Characteristics of the supercomputers in this study.

Machine
name Machine type or OS Total no. of cores

Memory per
core (Gbytes) System type Clock speed Peak flops

Top 500 rank
(as of Nov. 2009)

JaguarPF Cray 224,162 2.0 XT5 2.6 GHz 2.33 Pflops 1

Ranger Sun Linux 62,976 2.0 Opteron Quad 2.0 GHz 503.8 Tflops 9

Dawn Blue Gene/P 147,456 1.0 PowerPC 850.0 MHz 415.7 Tflops 11

Franklin Cray 38,128 1.0 XT4 2.6 GHz 352 Tflops 15

Juno Commodity (Linux) 18,402 2.0 Opteron Quad 2.2 GHz 131.6 Tflops 27

Purple AIX (Advanced
Interactive Executive)

12,208 3.5 Power5 1.9 GHz 92.8 Tflops 66

26	 May/June	2010

Ultrascale	Visualization

Four observations are noteworthy. First, careful
consideration of I/O striping parameters is neces-
sary for optimal I/O performance on Lustre file sys-
tems (Franklin, JaguarPF, Ranger, Juno, and Dawn).
Even though JaguarPF has more I/O resources than
Franklin, its I/O performance was worse because
its default stripe count is four. In contrast, Frank-
lin’s default stripe count of two was better suited
for the I/O pattern, which read 10 separate gzipped
files per core. Smaller stripe counts often benefit
file-per-core I/O because the files are usually small
enough (tens of megabytes) that they won’t contain
many stripes. Spreading them thinly over many I/O
servers increases contention.

Second, because the data was gzipped, the I/O
load across cores was unequal. The reported I/O
times measure the elapsed time between file open-
ing and a barrier after all cores are finished read-
ing. Because of this load imbalance, I/O time
didn’t scale linearly from 16,000 to 32,000 cores
on Franklin and JaguarPF.

Third, Dawn has the slowest clock speed (850
MHz), which was reflected in its contouring and
rendering times.

Finally, although many of the variations we ob-
served were expected—for example, owing to slow
clock speeds, interconnects, or I/O servers—others
weren’t. When we increased Franklin’s render-
ing time from 16,000 to 32,000 cores, seven to
10 network links failed and had to be statically
rerouted, resulting in suboptimal network per-
formance. Rendering algorithms are “all reduce”-
type operations sensitive to bisectional bandwidth,
which was affected by this issue. Also, for Juno’s
slow rendering time, we suspect a similar network
problem. We haven’t been able to schedule time on
either machine to follow up on these issues.

Varying over the I/O Pattern
We compared collective and noncollective I/O pat-
terns on Franklin for a one-trillion-cell upsampled
data set. In the noncollective test, each core per-
formed 10 pairs of fopen and fread calls on
independent gzipped files without any coordina-
tion among cores. In the collective test, all cores
synchronously called MPI_File_open once and
then MPI_File_read_at_all 10 times on a
shared file (each read call corresponded to a differ-

 0

 10

 20

 30

 40

 50

 60

8,000
cores

Ti
m

e
(s

ec
.)

No. of cores No. of cores

Purple

 0

 50

 100

 150

 200

 250

16,384
cores

Dawn

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

16,000
cores

Juno

 0

 50

 100

 150

 200

 250

 300

 0

 50

 100

 150

 200

 250

 300

16,000
cores

Ranger

16,000 32,000

Franklin

 0

 100

 200

 300

 400

 500

 600

 700

 800

16,000 32,000

JaguarPF

I/O
Contour
Render

Figure	2.	Runtimes	for	I/O,	contouring,	and	rendering.	These	results	show	that,	although	there	is	variation	across	the	
supercomputers,	I/O	is	the	slowest	phase.

Table 2. Performance across diverse architectures.

Machine No. of cores
Data set size

(TCells) Total I/O time (sec.) Contour time (sec.)
Total pipeline

execution time (sec.)†
Rendering time

(sec.)

Purple 8,000 0.5 53.4 10.0 63.7 2.9

Dawn 16,384* 1.0 240.9 32.4 277.6 10.6

Juno 16,000 1.0 102.9 7.2 110.4 10.4

Ranger 16,000 1.0 251.2 8.3 259.7 4.4

Franklin 16,000 1.0 129.3 7.9 137.3 1.6

JaguarPF 16,000 1.0 236.1 10.4 246.7 1.5

Franklin 32,000 2.0 292.4 8.0 300.6 9.7

JaguarPF 32,000 2.0 707.2 7.7 715.2 1.5

* Dawn requires that the number of cores be a power of two.
† This measure indicates the time to produce the surface.

	 IEEE	Computer	Graphics	and	Applications	 27

ent domain in the data set). An underlying collec-
tive buffering, or two-phase algorithm, in Cray’s
MPI-IO implementation aggregated read requests
onto a subset of 48 nodes (matching the file’s 48
stripe count) that coordinated the low-level I/O
workload, dividing it into 4-Mbyte stripe-aligned
fread calls. As the 48 aggregator nodes filled their
read buffers, they shipped the data through MPI to
its final destination among the 16,016 cores. We
used a different number of cores (16,000 versus
16,016) to make data layout more convenient for
each scheme.

Table 3 shows the I/O patterns’ performance
on Franklin. The data set size for collective I/O
corresponds to 4 bytes for one trillion cells. The
data read isn’t 4,000 Gbytes because 1 Gbyte is
1,073,741,824 bytes. The data set size for noncol-
lective I/O is much smaller because it was gzipped.

Both patterns led to similar read bandwidths, 7.4
and 7.8 Gbytes per second (GBps), which are about
60 percent of the maximum available bandwidth
of 12 GBps on Franklin. In the noncollective case,
load imbalances caused by different gzip compres-
sion factors might account for this discrepancy.
For the collective I/O, we speculate that coordina-
tion overhead between the MPI tasks might limit
efficiency. Furthermore, achieving 100 percent ef-
ficiency wouldn’t substantially change the balance
between I/O and computation.

Varying over Data Generation
Here, we processed both upsampled and replicated
data sets with one trillion cells on 16,016 cores of
Franklin using collective I/O. Figure 3 shows the
visualization results for the replicated data set.

The contouring times were identical because this
operation is dominated by the movement of data
through the memory hierarchy (L2 cache to L1
cache to registers), rather than the relatively rare
case in which a cell contains a contribution to the
isosurface (see Table 4). The rendering time nearly
doubled because the contouring algorithm pro-
duced more triangles with the replicated data set.

Scaling Experiments
To further demonstrate the scaling properties of
pure parallelism, we present results that demon-
strate weak scaling (scaling up the number of pro-
cessors with a fixed amount of data per processor)
for both isosurface generation and volume ren-

dering. (We ran this study in July 2009, after fix-
ing the volume-rendering algorithm.) Once again,
these algorithms test a large portion of the under-
lying pure-parallelism infrastructure and indicate
a strong likelihood of weak scaling for other algo-
rithms in this setting. Demonstrating weak-scaling
properties on high-performance computing systems
meets the accepted standards of Joule certification,
which is a US Office of Management and Budget
program to evaluate the effectiveness of agency pro-
grams, policies, and procedures.

Study Overview
We performed the scaling studies on output from
Denovo, Oak Ridge National Laboratory’s 3D

Table 3. The performance of different I/O patterns on Franklin.

I/O pattern No. of cores
Data set size

(TCells)
Total I/O time

(sec.) Data read (Gbytes)
Read bandwidth

(Gbytes per second)

Collective 16,016 1 478.3 3,725.3 7.8

Noncollective 16,000 1 129.3 954.2 7.4

Figure	3.	Our	third	category	of	experiments	varied	over	data	generation,	
to	ensure	we	weren’t	studying	data	that	was	unrepresentatively	smooth.	
This	image	shows	a	contouring	of	replicated	data	(one	trillion	cells	
total),	visualized	with	VisIt	on	Franklin	using	16,016	cores.

Table 4. Performance across different data generation methods.

Data
generation

Total I/O
time (sec.)

Contour
time (sec.)

Total pipeline
execution time (sec.)

Rendering
time (sec.)

Upsampled 478.3 7.6 486.0 2.8

Replicated 493.0 7.6 500.7 4.9

28	 May/June	2010

Ultrascale	Visualization

radiation transport code that models radiation
dose levels for a nuclear reactor core and its sur-
rounding areas. The Denovo simulation code
doesn’t directly output a scalar field representing
the effective dose. Instead, we calculated this dose
at runtime through a linear combination of 27
scalar fluxes. For both the isosurface and volume-
rendering tests, VisIt read in 27 scalar fluxes and
combined them to form a single scalar field rep-
resenting radiation dose levels. The isosurface ex-
traction test extracted six evenly spaced isocontour
values of the radiation dose levels and rendered a
1,024 × 1,024 pixel image. The volume-rendering
test consisted of ray casting with 1,000, 2,000 and
4,000 samples per ray of the radiation dose level
on a 1,024 × 1,024 pixel image.

We ran these visualization algorithms on a base-
line Denovo simulation consisting of 103,716,288
cells on 4,096 spatial domains with a 83.5-Gbyte
disk. We ran the second test on a Denovo simula-
tion nearly three times the size of the baseline run,
with 321,117,360 zones on 12,720 spatial domains
and a 258.4-Gbyte disk.

Results
The baseline calculation used 4,096 cores; the
larger calculation used 12,270. We chose these
core counts, which are large relative to the prob-
lem size, because they represent the number of
cores Denovo used. This matching core count was
important for the Joule study and is also indicative
of performance for an in situ approach.

Tables 5 and 6 give the weak-scaling results of

isosurfacing and volume rendering, respectively.
(These tests didn’t include I/O.) The algorithm
demonstrates superlinear performance because the
number of samples per core (which directly affects
the work performed) is smaller at 12,270 cores,
whereas the number of cells per core is constant.
The anomaly in which performance increases at
2,000 samples per ray requires further study.

Figure 4a shows the rendering of an isosurface
from the Denovo calculation we produced using
VisIt; Figure 4b gives the volume rendering of the
data from the calculation.

Pitfalls at Scale
Our results in this section illustrate that decisions
that were appropriate on the order of hundreds
of cores become serious impediments at higher
levels of concurrency. The offending code existed
at various levels of the software, from core al-
gorithms (volume rendering), to code supporting
the algorithms (status updates), to foundational
code (plug-in loading). The volume-rendering
and status update problems were easily correct-
able; their fixes will be in the next public version
of VisIt. We partially addressed the plug-in load-
ing problem, but a total fix might require remov-
ing shared libraries altogether.

Volume Rendering
The volume-rendering code used an O(n2) buffer,
where n is the number of cores. An all-to-all com-
munication phase redistributed samples along rays
according to a partition with dynamic assign-
ments. An optimization for this phase minimized
the number of samples that needed to be commu-
nicated by favoring assignments that kept sam-
ples on their originating core. This optimization
required an O(n2) buffer that contained mostly
zeroes. Although this was effective for small core
counts, the coordination overhead caused VisIt to

Table 5. Weak scaling of isosurfacing.

Algorithm No. of cores

Time (sec.)

Minimum Maximum Average

Calculate radiation* 4,096 0.180 0.250 0.2100

12,270 0.190 0.250 0.2200

Isosurface† 4,096 0.014 0.027 0.0180

12,270 0.014 0.027 0.0170

Render (on core)‡ 4,096 0.020 0.065 0.0225

12,270 0.021 0.069 0.0230

Render (across cores)|| 4,096 0.048 0.087 0.0520

12,270 0.050 0.091 0.0530

* The time to calculate the linear combination of the 27 scalar fluxes.
† The isosurface algorithm’s execution time.
‡ The time to render that core’s surface.
|| The time to combine that image with the other cores’ images.

Table 6. Weak scaling of volume rendering.

No. of cores

Processing time per ray (sec.)

1,000 samples 2,000 samples 4,000 samples

4,096 7.21 4.56 7.54

12,270 6.53 6.60 6.85

	 IEEE	Computer	Graphics	and	Applications	 29

run out of memory at scale. Our solution was to
eschew the optimization, simply assigning pixels
to cores without concern for where individual
samples lay. As the number of samples decreases
with large core counts, ignoring this optimization
altogether at high concurrency is probably the best
course of action.

We don’t have comprehensive volume-rendering
data to present for the one-trillion-cell data sets.
However, we observed that after our changes, ray-
casting performance was approximately five seconds
per frame for a 1,024 × 1,024 image (see Figure 5).

For the weak-scaling study on Denovo data,
running with 4,096 cores, the speedup was ap-
proximately a factor of five (see Table 7).

All-to-One Communication
At the end of every pipeline execution, each core re-
ports its status (success or failure) and some meta-
data (such as extents). These status and extents
were being communicated from each MPI task to
MPI task 0 through point-to-point communication,
which caused significant delays, as Table 8 shows.

After our first round of experiments, our colleague
Mark Miller of Lawrence Livermore Lab indepen-
dently observed the same problem and reimple-
mented the scheme to use tree communication.
Taking the pipeline time and subtracting contour
and I/O time approximates how much time was
spent waiting for status and extents updates. (The
other runs reported in this article had status-
checking code disabled; the last Dawn run is the
only reported run with new status code.)

Another pitfall is the difficulty in getting con-
sistent results. In the Dawn runs, a dramatic slow-
down in I/O times occurred from June to August.
This is because the I/O servers backing the file
system became unbalanced in their disk usage in

Table 7. Volume rendering of Denovo data at 4,096 cores before and
after speedup.

Date run

Processing time per ray (sec.)

1,000 samples 2,000 samples 4,000 samples

Spring 2009 34.70 29.00 31.50

Summer 2009 7.21 4.56 7.54

(a) (b)

Figure	4.	Visualization	results	for	the	Denovo	calculation,	produced	by	VisIt	using	12,270	cores	of	JaguarPF:	(a)	a	rendering	of	an	
isosurface	and	(b)	a	volume	rendering	of	the	data.	These	images	were	the	byproduct	of	the	tests	to	demonstrate	that	VisIt	and	
the	pure-parallelism	technique	that	it	uses	are	capable	of	weak	scaling.

Table 8. Performance with old versus new status-checking code, on Dawn.

All-to-one? No. of cores
Data set size

(TCells)
Total I/O time

(sec.)
Contour time

(sec.)
Total pipeline

execution time (sec.)
Pipeline minus

contour & I/O (sec.) Date run

Yes 16,384 1 88.0 32.2 368.7 248.5 June 2009

Yes 65,536 4 95.3 38.6 425.9 294.0 June 2009

No 16,384 1 240.9 32.4 277.6 4.3 Aug. 2009

30	 May/June	2010

Ultrascale	Visualization

July. This caused the algorithm that assigns files
to servers to switch from a round-robin scheme to
a statistical scheme, meaning files were no longer
assigned uniformly across I/O servers. Although
this scheme makes sense from an operating sys-
tem perspective by leveling out the storage imbal-
ance, it hampers access times for end users. With
the new scheme, the number of files assigned to
each I/O server followed a Poisson distribution,
with some servers assigned three or four more
times more files than others. Because each I/O
server has a fixed bandwidth, those with more
files will take longer to serve up data, resulting in
I/O performance degradation of factors of three
or four for the cores trying to fetch data from the
overloaded I/O servers.

Shared Libraries and Start-Up Time
During our first runs on Dawn, using only 4,096
cores, we observed lags in start-up time that wors-
ened as the core count increased. Each core was
reading plug-in information from the file system,

creating contention for I/O resources. We ad-
dressed this problem by modifying VisIt’s plug-in
infrastructure so that plug-in information could be
loaded on MPI task 0 and broadcast to other cores.
This change made plug-in loading nine times faster.

That said, start-up time was still slow, taking as
long as five minutes. VisIt uses shared libraries in
many instances to let new plug-ins access symbols
not used by current VisIt routines; compiling stati-
cally would remove these symbols. The likely path
forward is to compile static versions of VisIt for the
high-concurrency case. This approach will likely
be palatable because new plug-ins are frequently
developed at lower levels of concurrency.

Our results demonstrate that pure parallelism
does scale but is only as good as its support-

ing I/O infrastructure. We successfully visualized
up to four trillion cells on diverse architectures
with production visualization software. The super-
computers we used were “underpowered,” in that
the current simulation codes on these machines
produce meshes far smaller than a trillion cells.
They were appropriately sized, however, when con-
sidering the rule of thumb that the visualization
task should get 10 percent of the simulation task’s
resources and assuming our trillion-cell mesh rep-
resents the simulation of a hypothetical 160,000-
core machine.

I/O performance became a major focus of our
study because slow I/O prevented interactive rates
when loading data. Most supercomputers are
configured for I/O bandwidth to scale with the
number of cores, so the bandwidths we observed
in our experiments are commensurate with what
we should expect when using 10 percent of a fu-
ture supercomputer. Thus, the inability to read
data sets quickly presents a real concern. Worse,
the latest supercomputing trends show diminish-
ing I/O relative to increasing memory and flops,
meaning that the I/O bottleneck we observed
might potentially constrict further with the next
generation of supercomputers.

Some potential hardware and software solutions
might help address this problem, however. From the
software side, multiresolution techniques and data
subsetting (such as query-driven visualization)
limit how much data is read, whereas in situ visu-
alization avoids I/O altogether. From the hardware
side, an increased focus on balanced machines that
have I/O bandwidth commensurate with comput-
ing power would reduce I/O time. Furthermore,
emerging I/O technologies, such as flash drives,
might have a significant impact. From this study,

Figure	5.	Volume	rendering	of	one	trillion	cells,	visualized	by	VisIt	on	
JaguarPF.	As	expected,	we	ran	into	many	pitfalls	when	running	at	high	
levels	of	concurrency.	In	this	case,	VisIt’s	volume-rendering	algorithm	
had	to	be	modified	to	remove	an	O(n2)	algorithm.

Our results demonstrate that pure
parallelism does scale but is only as good

as its supporting I/O infrastructure.

	 IEEE	Computer	Graphics	and	Applications	 31

we conclude that some combination of these solu-
tions will be necessary to overcome the I/O prob-
lem and obtain good performance.

Acknowledgments
This work was supported by the Director, Office of
Advanced Scientific Computing Research, Office of Sci-
ence, of the US Department of Energy (DOE) under
contract DE-AC02-05CH11231 through the Scientific
Discovery through Advanced Computing program’s
Visualization and Analytics Center for Enabling Tech-
nologies. We thank Mark Miller for status update
improvements and the anonymous reviewers, whose
suggestions greatly improved this article. The follow-
ing resources contributed to our research results: the
National Energy Research Scientific Computing Center
(NERSC), which is supported by the US DOE Office
of Science under contract DE-AC02-05CH11231; the
Livermore Computing Center at Lawrence Livermore
National Laboratory (LLNL), which is supported by
the US DOE National Nuclear Security Administration
under contract DE-AC52-07NA27344; the Center for
Computational Sciences at Oak Ridge National Labora-
tory (ORNL), which is supported by the US DOE Of-
fice of Science under contract De-AC05-00OR22725;
and the Texas Advanced Computing Center (TACC)
at the University of Texas at Austin, which provided
HPC resources. We thank the personnel at the com-
puting centers that helped us perform our runs, spe-
cifically Katie Antypas, Kathy Yelick, Francesca Verdier,
and Howard Walter of NERSC; Paul Navratil, Kelly
Gaither, and Karl Schulz of TACC; James Hack, Doug
Kothe, Arthur Bland, and Ricky Kendall of ORNL’s
Leadership Computing Facility; and David Fox, Debbie
Santa Maria, and Brian Carnes of LLNL’s Livermore
Computing.

Hank Childs is a computer systems engineer at Law-
rence Berkeley National Laboratory and a researcher
at the University of California, Davis. His research
interests include parallel visualization and produc-
tion visualization applications. Childs has a PhD in
computer science from the University of California at
Davis. Contact him at hchilds@lbl.gov.

David Pugmire is a computer scientist in Oak Ridge
National Laboratory’s Scientific Computing Group. His
research interest is parallel scientific data analysis and
visualization. Pugmire has a PhD in computer science
from the University of Utah. Contact him at pugmire@
ornl.gov.

Sean Ahern is the visualization task leader for the
Oak Ridge Leadership Computing Facility at Oak

Ridge National Laboratory and the director of the
US National Science Foundation TeraGrid XD Cen-
ter for Remote Data Analysis and Visualization at
the University of Tennessee. His research interests
are distributed visualization and data processing on
computational clusters. Ahern has a BS in computer
science and mathematics from Purdue University.
Contact him at ahern@ornl.gov.

Brad Whitlock is a computer scientist at Lawrence
Livermore National Laboratory and a founding de-
veloper of the VisIt visualization and data-analysis
software. His interests include visualization, parallel
programming, and GUI design. Whitlock has a BS
in computer science from California State University,
Sacramento. Contact him at whitlock2@llnl.gov.

Mark Howison is a computer systems engineer in
Lawrence Berkeley National Laboratory’s Visualization
Group. His research interests include scientific comput-
ing, visualization, graphics, and parallel I/O. Howison
has an MS in computer science from the University
of California, Berkeley. Contact him at mhowison@
lbl.gov.

Prabhat is a member of Lawrence Berkeley National
Laboratory’s Scientific Visualization Group. His re-
search interests include computer graphics, scientific
visualization, high-performance rendering and com-
puting, human-computer interaction, information
visualization, general-purpose computation on GPUs,
and machine learning. Prabhat has an MS in com-
puter science from Brown University. He’s a member
of the ACM. Contact him at prabhat@lbl.gov.

Gunther H. Weber is a research scientist and engineer
at Lawrence Berkeley National Laboratory and an ad-
junct assistant professor at the University of California,
Davis. His research interests include topology-based data
analysis and parallel visualization. Gunther has a PhD
in computer science from the University of Kaiserslau-
tern. He’s a member of the ACM and the IEEE Computer
Society. Contact him at ghweber@lbl.gov.

E. Wes Bethel is a staff scientist at Lawrence Berke-
ley National Laboratory, where he conducts and leads
research, development, and deployment activities in
high-performance, parallel visual data exploration al-
gorithms and architectures. Bethel has a PhD in com-
puter science from the University of California, Davis.
He’s a member of ACM Siggraph and IEEE. Contact
him at ewbethel@lbl.gov.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

